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FILTER PROPERTIES OF

LEAST SQUARES FITTED POLYNOMIALS

Bodo Kruger

SUMMARY

The use of least squares fitted polynomials (LSP) as high and low pass
filters is analyzed in this paper.

A typical high pass filter application is noise analysis -of tracking data.
Equations are given for the estimation of degrees of freedom k needed in the
LSP in order to "take out" the orbit so that the residuals (tracking data - LSP)
represent the tracking data noise. As the LSP only contains k terms, the orbit
is not completely "taken out" and what is left over of the orbit in the tracking
data is called the modeling error 8. It is shown that the standard deviation of S
is proportional to Tk and y(k)

o-s , Tk y(k)

where

T = the length of the data stretch

y(k) = k1h derivative of the "orbit".

The modeling error is analyzed in some detail for a lunar orbit (see Figures 1
through 5) and it is shown that k = 7 is needed for both range and range rate
data if the standard deviations ur and o-T , of the modeling errors have to satisfy

ar < 10 m

04= < lm/sec

and if the data stretch is 1/4 revolution, starting at the earth-moon line.
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A typical application of low pass filtering is data compression. Noisy data
is substituted by one or more points of an LSP which has been fitted to the noisy
data. The modeling error S in this application introduces a bias in the com-
pressed data points. It is shown that the commonly used midpoint of the LSP is
not optimal with respect to the bias. For instance, for k T 5, the bias may be
reduced by a factor of 1.53 if the optimal, point is chosen instead of the midpoint.
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FILTER PROPERTIES OF

LEAST SQUARES FITTED POLYNOMIALS

1.0 INTRODUCTION
R

In this report the filter properties of Least Squares Fitted Polynomials
(LSP) are analyzed from the viewpoint of their use as high pass and low pass
filters.

In the application as a high pass filter, noise is removed from data con-
taminated by noise by fitting a LSP to the contaminated data. The noise is con-
tained in the residuals (contaminated data minus LSP) but some of the data

r	 "spills over" into the residuals. The data points may be thought of as being
generated by a polynomial with infinitely many terms. Fitting a LSP with a

a	 finite number of terms to the data has to result in modeling errors. These
modeling errors "spill over" into the residuals and it is therefore desirable to
keep them small. The modeling errors can be made small by using a LSP with
many degrees of freedom, i.e. many terms. On the other hand, the noise intro-
duced by the computer increases with the degrees of freedom of the LSP. It is
therefore desirable to determine the minimum number, of degrees of freedom of
the LSP with acceptable modeling errors. Expressions for the variance of the
modeling errors are derived in Section 2 and their application to analysis of
tracking data from a lunar orbit is demonstrated in Section 3.

In the application of the LSP as a low pass filter, noisy data is replaced by
the LSP. The modeling error shows up as a "bias" and the noise on the data
introduces a statistical uncertainty to the LSP. Expressions for bath the bias
and the statistical uncertainty are given in Section 4,

2.0 THE LEAST SQUARES FITTED POLYNOMIAL AS HIGH PASS FILTER

2.1 Data Without Noise

Assume that exact data points are generated by the polynomial

Y j " bo + b 1 j + , • bk -1 jk-1 + bk i. k + .. bn -1jn_1
	

(2.1)

•

and that a polynomial

1



a

y = aQ + a i +	 + sV- i 
ik- i	 (2.2)

with k degrees of freedom is fitted to Y^ in the least squares sense. N equi-
distant values of Yj are available and i and j stand for the integers from 1 to N.
The sampling interval is normalized to X, which can be done without loss of
generality.

It is shown in Reference 1, Equation (I.0) that y may be written

1	 N	 0 j
yf =

FA,i 
A Y j	 (2.3)

Jul

where

AO	 At	 Ak-i

A l	 A2	 Ak

I AI (2.4)

0 j
i A

n

.	 .

Ak_ 1 Ak	 A2k-2

0	 1	 j	 j k-i

1	 AO	 Al	 .	 Al, i

i	 Al	 A2	 Ak

ik-1 
Ak-
	 A11 ^	 2k-2

2

(2.5)



}	 .

14

Av - 
L 1v
	 (2.$)

1X1

Y, can not be fitted exactly to Y, if k < n,

The residuals or modelini{ error

81 = Y1,	 1	 (2.7)

may be written

N,

	

S^ - —1A ^ 0 A 	 IbO + h 1 j +... 4, bn=i j n- 1 	(2.$)

+ (b,, + b l i +	 + b,-i in-11

EWY for m < k we obtain from Reference 1, Appendix E,

N
1	 O j	

bm 
j m	 _.bm im	 (2.9)

iA	 ji AI	
j=i

so that

S. =	 1	

N	
U j 

	 jk...b_ jn
-1l + jbk ik + 	 + bn-^ in-(2.14)

	

A
	 (bk
	 'n 1	 i

j=1

It is shown in Appendix A that this (,xpression also may be written

S	
A^

^ _ (^_l
k 

^^jik I bk + ... + Ji"_ i l b
n _ 1}	 (2.11)_. 

3
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Where

1	 AQ	 Al	 Ak -1
i	 Al	 A2 	.	 Ak

l ik+v l	 (2.12).	 R	 R	 R

.	 •	 R	 R

• k-1 A	 pL	 Ak_I Ak 	 R R	 A2k-2

kvi + Ak
+v Ak+v +1 •	

R A2k+v-1

The variance E {8 21 of the modeling error is

1 N	 1n-k n-k	 NN

Ia { 2) = N LSi2	
A 2	 L..^ lik+pl	 (ik*a) bk+pbk+q (2.13)

Nl l
i = 1	 p=O q= Q I=1

In Appendix E it is shown that for large N

N

L^ l ik+p l . 
l i k+q l (2.14)

N2k+p+q+1	 [(k + p)	 [(k + q) !]

p ! q ! (2k+p) ! (2k+ q) ! (2k+p+ q+

Insertion in Equation (2.13) yields

..	 l Al 2

R

4
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• r

E ^^? 2	 N2k	 k-""
[(2k)	 ! ] 2

4
	 b2 + N2k+2

(2k + 1)	 k	 [(2k
[(k + 1) !	 ] 2

(2k + 3)	 k+1+	 1) !)

+ N2k +4 	[(k + 2) !) a	
b 2	 + . . . .

4 [(2k + 2) !] 2 (2k + 5) k+2

	

[(k)!3 .2 [(k+l)!] 2	 [(k)!]2 [(k+2)!] 2

+ 2N2k+i (2k)! (2k+1)! (2k+2) b k bk+I + 2N2k+2 2(2k)! (2k+2)! [2k +33 bkbk+2+...

2k+3	
I 2	 2

2(2k+1)! (2k+2)! (2k+4) k +r k+2

(2.15)

An alternate and useful expression for the variance is obtained by expressing
the generating polynomial Y, , Equation (2.1), in a Taylors series

	

Y (1 >	 y(2)	 Y(n-IVt = Y(0)	 l	 t + 2 ^- t 2 + ... +	 to -^	 (2.16)
(n	 1) !

If the sampling interval is h, then

t	 J h	 (2.17)

and thus by comparison with Equation (2.1)

Y(V)
bV =	 VI 	 (2.1$)

For large N we may write the interval of observation T as

T = N --h	 (2.19)

The variance is then



^r

E	 2T2k	 CC! )] 
2	

(y(k))z + T2k+2	 [(k + l2!] 2	
(y(k+i))2

[( 2 k)•

f

 ] (2k 4. 1)	 C(2k + 1 ) ! ] ( 2k + 3)

A

+ T2k +4 	 [(k + 
2)!] .	

.(y(k+2) )2 +
4 [(2k + 2)!] 2 (2k + 5)	 .

+ 2T2k +1 	 (k)!(k+l)!	 y(k)y(k+1)+2T2k+2 	 (k)! (k+2)!	 y(k)y(k+2)

	

(2k)!(2k+1)!(2k+2)	 2(2k)1(2k+2)!(2k+3)

+ .... + 2T2k+3	 (k 1)! (k+2)!	 y( k + 1) y(k+2) +	 .. (2,20)2(2k+ 1). (2k+2). (2k+4)

In many cases only the first term needs to be considered and Equation (2.20)
simplifies to

	

CT S 	 k	 k!=

	

	 l y(k ) 1	 (2.21)T (2k)! 2k + 1

where

0" 2 = E (82)

If Y (t) only contains even or odd terms k may be chosen so that Y (k) = 0 aDd

Tic + 	 (k + l)!	 Y(k+1)
(2k + 1)! 2k+ 3 (2.22)

Sometimes it is desirable to consider a symmetric interval from -T to +T.
The modeling error S i for the symmetric interval may be derived by the vari-
able transformation

o-^ =

x = t + T
	

(2.23)

!
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Thus if

-T	 t < +T

then

0 < x < 2T

and the previously found equations for E (S 2) are applicable to the x interval.

Substituting Equation (2.23) into (2.16) we obtain

n-i 
Y(r)	 n-1 

Y(r)
Y _	 r! tr _
	 , r! (x _. T)r

r = t3	 r-0

or

n -1Y (X)	 m Xm	 (2.24)
m-Q

where

n -1	
Y(r)

18m =
	 (_. 1)r -m 

(r _ 
m), Tr -m	 (2.25)

IT, .
r=m

Substitution Equation. (2.25) into Equation (2.20) yields

E*(82) = ( 2T)2k	 (k!)2	
(Y(k))2

[(2k)!]?(2k + 1)	 (2.2G)

+2k+2	
(k!)2	

(Y(k+1))2 + y(k) y(k +2)1
(2T)	 —	 L .. .

[(2k)!] 2 (2k + 1) (2k + 3) 4 (2k + 1)	 4

7
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where E* (8 2 ) deviates the variance of the modeling error 8  for the interval
from -T to +T.

From Equations (2.21) and (2.26) it is seen that a, is proportional to the
length of the interval raised to power k and proportional to the kth derivative
of Y if terms of higher order then k are negligible.

2.2 Data With Noise

Let y j be the observed values of the true data points Y j . If the data is con-
taminated with noise e j then

yj = y  + e j
	 (2.27)

The residuals are

Vi _ Y  - yi

Hence from Equations (2.3) and (2.7)

	

1	
N 

0 Jvi 	
+ I AI L i A e 

j
+ S i	 (2.28)

j=1

The variance E {v2 } is thus

2

	

N	 N 	 N	 N

E {v 2} = N	 E? + N	 1	 J E j	 + 1	 8 .2L,	 I AI	 i A	 N	 1L

	

i-1	 i-1	 j=1	 i=2

N	
E	

N	 N	 N	 8,	 N O

N	 + 2
	

?	 J

p I 	 i A ^i	 N	 Eii + IN	 IAI	 i A E^

i=1	 j=1	 i=1	 I i = 1	 j=1

(2.29)

8
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If the E i are uncorrelated stochastic variables with zero mean, then

?	 ae

and

Iim 1 
N

V

N-•co N	 Ei Si - 0
i=1

because b i is a polynomial in i according to Equation (2.11)

N
0 j

Ej
i A

j =1

is then also a stochastic variable and

1 im 1 
N	

°i	
N 

^0 j

N- oo N
	

IAI L i A Ej = 0
j. = 1 	j=1

In Reference 1, Appendix E, it is shown that

N
1	 0 j	 2_	 1 0	 2. E 	__	 _	 ) i	 2

IAI	 i A ^ j	 - - IAI ^.E.	 A	 - k aE

i = 1	 > >

We also have

(2.30)

(2.31)

(2.32)

N	 N

T
E i 	 0 j	 _ 1 0	 EjEj

	

j = 1	 1'
IAI	 i A Ej	 IAI 	E.E.	 A
=1 

As it is immaterial whether the summation index is i or j, we thus have

9



N 
Ei 0r	 J l E^ = - k c-2	 (2.33)
I AI	 i A

Using Equation (2.20) the final result is obtained

Nk	 k1	 (k	 k	
2

E {v }	 2=	 N a E + (2k)! 2k + 1 Y > T + , ..	 (2.30)

The total variance is thus obtained by adding the noise variance to the model
error variance. See also Reference 2.

3.0 ANALYSIS OF RANGE AND RANGE RATE DATA
FROM A LUNAR ORBIT

In order to get a feel for the degree of polynomial needed for least squares
fits to Lunar Orbiter data, the case of a circular lunar orbit is analyzed.

From Figure 1 we obtain, neglecting the earth rotation

r 2 ^ a 2 + b 2 	2ab cos wt	 (3.1)

The application of Equations (2.20) through (2.26) requires a series expansion of
the range r and the range rate V. The easiest way seems to be to expand cos cot
into a series and then to extract the root.

With

a = 3.844 X 108 m

b = 1.800 X 106 m

1

F^ = 4.903 X 10-12 m3/sec2

CO2 = 8.406 X 10- 7 (rad/sec )2

10



LUNAR

ORBIT

1

r

a

w
_z
J
z
O
O

1

auJ

NASA-GSFC-T&DS
MISSION & TRAJECTORY ANALYSIS DIVISION
BRANCH 551	 DATE 1/17/68
BY BODO KRUGER	 PLOT NO. 1029

OBSERVER

Figure 1. -Lunar Orbit Geometry
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k

the range r is

	

1.524	 1.3010 X 10-	1.156 X 10- 1
r = 3.$26 X 10 $ + 2 ^- t^ -	 4,	 t4 +

6^	
t6

.

(3.2)

1.189 X 10-18	 1.796 X 10-24	 4.72 X 10-30_
	8!	

is +10' 	tlo _	
121	 t12 ^ ..

where r is in meters and t in seconds. The range rate r in m/sec is

1.300 X 10-1 	1.156 X 10- 12

r - 1.524 0 t-	 31,	 t3+	 5!	 is

(3.3)

- 1.189 X 10-18 t7 + 1,796 x 10-24 t9 _ 4.72 X 10'"30 
t 11  + .

	

7!	 9!	 ill.

The standard deviations oar and o-r- of the modeling errors for range and
range rate have been calculated for the lunar orbit using Equations (2.21), (2.22)
and (2.26) both for the unsymmetric interval 0 to T and for the symmetric in-
terval - T to +T. The results are summarized in Table 1 and are shown
graphically in Figures 2 through 5. For the region of o-r and o-= - shown in
Figures 2 through 5, the one-term approximation leading to Equations (2.21),
(2.22) and (2.26) is valid. For higher values of a- r and o-^ the next term in the
series expansions should be considered (see Section 2.1).

In Figures 4 and 5 are shown two points obtained by computer simulation.
Using the geometry shown in Figure 1, '75 values for r and r' were calculated
for the time interval -2220 sec < t _< +2220 sec. A polynomial with k = 7 was
fitted to the range data and a polynomial with k = 8 was fitted to the range rate
data. The standard deviations of the residuals are in excellent agreement with
the curves in Figures 4 and 5.

The time for one orbit is 'r 6,840 sec and for 1/4 of an orbit T /4 = 1,710
sec. Assume we want to fit a polynomial to 1/4 of an orbit with the modeling
errors

0'r 
< 10 m

Cr; ` < 1 cm/sec

x

12



Table 1

The Standard Deviation of the Modeling Errors for Range
and Range Rate for a Lunar Orbit

,

Unsymmetric Interval Symmetric Interval
from 0 to T from -T to +T

0"r O t 0'r O'i

m m/sec m m/sec

2 5.86 x 10-2T2 2,46 x 10-$ T3
3.2.8 x 10-8T3

3 2.06 x 10 -9 T 4 4.10 x 10-'T'
4.13 x 10" 9 T 4

4 2.58 x 10- ' o T4 1.153 x 10-"Ts
3.69 x 10-16 T5

5 5.78 x 10 -18 T 6 1.153 x 10-1' Ts

3.08 x 10-1' T6
6 4.82 x 10° 18 T 6 2.40 x 10-25 T

2.27 x 10-24 T 7

7 8.92 x 10' 2 ' T 8 1.775 x 10 -26 2, 7

1.420 x 10-21T8

8 5.56 x 10 -28 T 8 4.20 x 10-34T9

.1.105 x 10 -322'9

9 1.171 x 1.0" 35 T 10 .2.35 x 10-3'T9

5.98 x 10"342,10

10
6.47 x 107412,11

11 2.99 x 10-42T12

For the unsymmetric case, 0 < t < 1710 sec we obtain from Figures 2 and 3
that a polynomial with k = 7 is needed for both range and range rate. If the
interval is symmetric, -855 _< t < +855 sec, we see from Figures 4 and 5 that
a polynomial with k = 7 is needed for the range and k = 6 for range rate.

r

s
yy*
	

I

i
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Figure 2. The standard deviation o- r for the modeling error from a least squares polynomial fit,
with k degrees of freedom, to range data from a lunar orbit. The interval of observation starts at
the earth-moon line and is of duration T sec.
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Figure 3. The standard deviation , o- r -for the modeling error from a least squared polynomial fit,
with k degrees of freedom, to range rate data from a lunar orbit. The interval of observation
starts at the earth-moon line and is of duration T sec.
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11

go am



r

4.0 THE LEAST SQUARES FITTED POLYNOMIAL AS LOW PASS FILTER

4.1 Bias and :Noise

In this application of the least squares fitted polynomial she measured dry`:a
points yi are substituted by the LSP yi in order to eliminate measurement
noise. The LSP is thus used as a low pass, filter. The problem in this applica-
tion is to determine the difference S i between the true data point Yi and the
LSP yi.

Yi Yi

If the measured points y, are contaminated with noise 	 then

N
1 
L 

i j

—Ai

and from Equations (2.3) and (2.11)

_ ^_.13k
°i _	

IAI	

lik[ 
bk + Iik+11 bk+i + 

ilk
+21 bk +2 +

(4.1)

N1	 0 j

+ I Al	 i Ai
j-1

The first term in this equation is "bias" due to the modeling error and the
second  term is the zero mean error due to measurement noise. The bias term
will be denoted Si and the variance of the noise E {Si 

vi12.  In Appendix C it
is shown that for large N, Si may be written

18



(-k)k 1 k	
fk . N	

Pk bk + ' 2(2k + 15 { Pk+I + (2k + 1 ) Pk ) N bk+i2kn (2j _ 1).•

(4.2,)

4' 4 (2k +1 1) (2k +() 3) {Pk +2 + (2k + 3) Pk+ 1 + (k + 2) ( 2k + 1 ) Pk) N2 bk+2 + . •.

where Pk are the Legendre polynomials in u and

i = N	 2 1	 (4.3)

If Y i is expanded in a Taylor series an alternate expression is obtained using
Equation (2.18) and (2.19)

k k	
f

Si 
_	

k 

1) T	
[Pk y(k) + 2 (2 k + 1) fpk+l + ( 2k + 1 ) Pk j y(k +1)

2k I (2 j -. 1)

(4.4)

+	

2	 ••^

 4 (,2k +) (2k + 3) l Pk+s + (2k + 3) Pk +1 + (k + 2) (2k + 1) Pk } y(k+2) + .

where

T = the total length of the interval of observation

Y(k) = k th derivation of Y

T is in the same units as the variable Y is expanded in.

If the Ei are uncorrelated and have standard deviation a,,, then Equation (1.7)
in Reference 1 is applicable and

a2
E {S i - S 1I 2	 N {P0 + 3P1 + ... + (2k+ 1)Pk}	 (4.5)

19



U	 P3

0	 0

0.7746	 0

I P4 1

0.3750

0.3000

k =4
U i P4

0.3400 0

0.8611 0

1 SI

0.3294

0.244.4

where Pk are the Legendre Polynomials in U as before.

4.2 Data Compression

A form of data compression is to substitute the N original data points by
one or more points from the LSP Y i . The compressed data points are subject
to the bias , as given by Equations (4.2) or (4.4). Therefore, yi should be
evaluated or interrogated at points where Si is small.

— From, Equations (4.2) and (4.4) it is seen that the first term in the expansion
of a i is Pk bk or Pk y(k) , The effect of this term can be eliminated by interro-
gating yi at a point «h'ere Pk = 0. For k > 3 we have several roots to choose
from. In order to determine which root to use, the next term in the expansion
of ^i is considered. This term is proportional to P lot as can be seen from
Equations (4.2) and (4.4). We thus choose the root for which i Pk+1I is smallest.
The roots of Pk and ! Pk+i i for k values from 3 to 5 are listed below.

k = 3

k = 5

Iu PS

0 0

0.5385 0

0.9062 0

1 P6 1

0.3125

0.2870

0.2049
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From the values of Pk+ 1 1 it is seen that the ,optimum root is the numerically
largest root of Pk = 0.

A commonly used point of interrogation is the midpoint u 0. It is clear
from the above that this is a very poor choice for even k. For odd k some im-
provement is obtained by choosing the optimum root rather than u = 0. For
k = 3 the improvement is a factor of 1.25 and for k = 5 the improvement factor
is 1.53.
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APPENDIX A
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N

L V = A"

j=1

a

by definition. Thus
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APPENDIX B

EVALUATION OF

N

'I lk+p I	 Ilk+ql
i=1

1	 Ao	 Ak-1

N	 N
lk+p l
	 Ilk+ql

i = 1 i=1

k-1 AAk-1	 2 k- 2

kPi+Ak+p	 A2k-1+p

1	 Ao	 Ak -1

i k-1 A	 . Ak-1	 2k-2

k+q1	 Ak+q	 A2k+q
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Ao	 •1	 Ak'-1

(B-1)

Ak_ 1	 +	 A2k-2

+

4

N

i=1

1

ik-i

ik+p

i k-1

ilk 2

i 2k- l+p

Aft

•

Ak- I

Ak+p

Ao

Ak -1

Ak+p

i k+q	 A	 .o

i2k-1+q A rl

i 2k+p+q Ak +p
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The determinants in the first column are all zero except the last one. Thus

AO 	. Ak- l	 Ak+q

N

LI lk+pl	 I ik+ql	 I A I

Ak-1	 A2k-2 	 A2k-1+q

Ak+p	 A2k-1+p A2k+p+q

(B-2)

For large N

Nv +1N
v ^' V + 1

N(l+k)2+p+q

,
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so that

AO	 Ak-1 Ak +q

Ak-1 ... A24-2	 A2k-1+q'.

Ak+p " ' A2k-1+p A2k+p+l

I

i	 1
1	 k	 k+1+ q

1	 1	 1
k	 ... 2k- 1	 2k+ q

1	 1	 1

k + 1 + p .. 2k +p 2k+l +p+q



but

R

1 2 k k++1+q

1 1 1 1
2 3 k+1 k + 2 + q

1 1 l 1
k k+1 2k-1 2k +q

1 1 1 1
k +I+p k +2+p .	 .	 2k+p 2 k + 1 + p + q

r

(k+g)
( 2 k +q) ! (2k+1+p+q)

k+l+q k+l+q
k+1+q 2 k

k+2+q k+2+q k+2+q
2

3 k+1

2k+q 2k+q 2k+q
k k+1	 .. 2k-1

2k+1+p+q 2k+1+p+q 2k+1+p+q
k+l+p k + 2 t p	

. . .	 2k +p
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(k-1+ p) (k+ q) (k - 1+ p) (k-1+ q) (k-1+p) (1+q)'2 (k+ 1 +p) -	 3 (k+2+p)	 ' ' , (k+ 1) (2k+p)
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1
k

4

v

In the first step the rows are multiplied by factors so that "One's" are "Mained
in the last column and in the se?.izd step the bottom. , row is subtracted from the
other rows. In Reference 1, Equation (C-7) it is shown that for large N

JAI = N k'

k

so that for large N

I

N	 + p) ),2 [(k + q	 2
Jik+pJ . Jik+qJ	 2k+l+o+q

N	 p!q! (2k+p)- ! (2k+q)! (2k+ 1+p+q) JAI'-

(B-4)
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APPENDIX C

EVALUATION OF

-1 ik+vJ

JAI

With v = 0 and the substitution

u +
N 

2

we obtain for large N



a  Pk + ak-1^ Pk-1 +,. ak- 2 Pk- 1 (C-1)

Pa

1 1
2p1 +^P0

1 1 1
6P2 + 2 P1+ 3 P

.q^

31.-.:.

4-.

Cr

.e.^'£ SE x w

4

(H--)
-2 I	 (Pk + (2k 1) Pk- 1 + k (2k - 3) Pk _ 2 +

2k r (2 j - 1)

r

whe're Pk = Pk (u) are the Legendre Polynomials. Thus

1	 11	 2	 k

1	 1	 1

2	 3	 ' k+1

1	 1	 1

3	 4	 . . . k+2
I i k I	 - Nk(k+l)

1	 1	 1

a k pk + ak _ 1 Pk _ 1 + ak _ 2 Pk _ 2 + ...	
k+ 1 k

+ 2
	 2k

(C-2)

Po may be eliminated by subtracting the top row from the others, yielding
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2 P1

6 P2
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2 P1 Nk(k+l)Ii kl 	 ^.

1
1	

2

1
Q	 12 .

1
0 12

a

ak pk + ak_ 1 pk _ 1 + ak_ 2 Pk _	 0
	

(C-3)

Repeating the process

2 (2k 1)
k	 ak Pk' 1	 ` K

i k I	 (C-4)

ak Pk	 0

where

1 1
1 2 k

1 1 1
2 3	 . .	 .	 k + 1
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But for large N

JAI = IKI N2
i

so that

(lk)	 _	 k!
Pk Nk

IAI	 -	 k
2k(2J"1)

(C-6)

For v = 1 we obtain in the same manner
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2k+1 R '(2 j - 1)
1

and for v 2
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